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Chain sequences are positive sequences fang of the form an ¼ gnð1� gn�1Þ for a

nonnegative sequence fgng: This concept has been introduced by Wall in connection

with continued fractions. These sequences are very useful in determining the support

of orthogonality measure for orthogonal polynomials. Equivalently, they can be used

for localizing spectra of Jacobi matrices associated with orthogonal polynomials

through the recurrence relation.

We derive sharp estimates for chain sequences which in turn give sharp estimates

for the norms of Jacobi matrices. We also give applications to unbounded essentially

self-adjoint Jacobi matrices. In particular, we show how to determine whether their

spectrum admits gaps around 0; and derive some integrability properties of the

spectral measure. # 2002 Elsevier Science (USA)

Key Words: orthogonal polynomials; chain sequences; Jacobi matrices; recurrence

relation.
1. INTRODUCTION

One of the main problems of the theory of orthogonal polynomials is the
following. Given a three-term recurrence formula which the polynomials
satisfy find a measure with respect to which the polynomials are orthogonal.
The existence is guaranteed by the Favard theorem; however, the nature of
this measure is not described by the theorem. The recurrence relation
determines the Jacobi matrix J : A problem now can be reformulated into:
assuming J is essentially self-adjoint find its spectral resolution of the
identity.

The first problem is to locate the spectrum of J : Of course, there are many
instances of Jacobi matrices for which this is known explicitly, along with
spectral measure (see [5]). Then one may expect to be able to identify spectra
for small perturbations of the known matrices.
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One of the most useful tools for locating the interval of orthogonality for
orthogonal polynomials, or the interval containing the spectrum of the
corresponding Jacobi matrix, is given by the so-called chain sequences.
These are sequences fang

1
n¼1; for which there exist a sequence fgng

1
n¼0 such

that 04gn41 and

an ¼ gnð1� gn�1Þ; n51:

These sequences were introduced by Wall in his Monograph on continued
fractions. He proved the following (see [10] or [3, Example 5.13, p. 100]).

Theorem A (Wall). Given a sequence fang
1
n¼1: Let J ¼ fJ ðm; nÞg1n;m¼0 be

the Jacobi matrix with entries defined as

Jn;m ¼

ffiffiffiffiffiffiffiffiffi
anþ1

p
for m ¼ nþ 1;ffiffiffiffiffi

an
p

for m ¼ n� 1;

0 otherwise:

8><
>:

Then J is a contraction on the Hilbert space ‘2ðNÞ if and only if fang
1
n¼1 is a

chain sequence.

In applications we will also make use of the following (see [2] or [3],
Theorem IV.2.1, p. 108).

Theorem B (Chihara). Assume a sequence of orthogonal polynomials

which satisfies

xpnðxÞ ¼ lnþ1pnþ1ðxÞ þ bnpnðxÞ þ lnpn�1ðxÞ; n50;

where l0 ¼ 0; ln > 0 and bn 2 R: Let a number a 2 R satisfy

(i) a5bn; for n50:
(ii) The numbers

l2n
ðbn�1�aÞðbn�aÞ; for n51; form a chain sequence.

Then there is an orthogonality measure m such that supp m 
 ½a;þ1�: The

converse is also true.

We will study chain sequences in order to get sharp estimates for bounded
Jacobi matrices in view of Theorem A. Also, what is surprising, we will
apply them to study the spectra of unbounded Jacobi matrices as well, using
this time Theorem B. The main results are contained in Section 2, where
sharp estimates are obtained for chain sequences.
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2. SHARP ESTIMATES FOR CHAIN SEQUENCES

The greatest constant chain sequence is an ¼ 1
4
¼ 1

2
ð1� 1

2
Þ: The problem

arises by how much a chain sequence can exceed 1
4
: The answer is given by

the next two theorems. The first theorem follows from [4, Theorem 2.2] but
our proof is different and will be used to show a sharper result stated in
Theorem 2.

Theorem 1. Let fang
1
n¼0 be a chain sequence such that

an5
1

4
þ

c
16n2

for n5N : Then c41:

Proof. Let e > 0: By replacing the constant c with c0 ¼ c� e and
replacing the number N with an appropriately bigger number N 0 we may
assume that

an5
1

4
þ

c0

4ð4n2 � 1Þ

for n5N 0: Let d ¼ c0
4
: Then we have

an5
1

4
þ

d
4n2 � 1

:

It suffices to show that d4
1

4
: By assumptions there exists a sequence gn; such

that 04gn41 and

gnð1� gn�1Þ5
1

4
þ

d
4n2 � 1

: ð1Þ

Since gnð1� gn�1Þ51
4
and gn�1ð1� gn�1Þ41

4
we get that the sequence gn is

nondecreasing and therefore its limit is 1
2
: Hence, we can write gn in the form

gn ¼ 1�dn
2

for 04dn41: Substituting this into (1) gives

dn�1 � dn � dn�1dn5
d

n2 � 1
4

: ð2Þ

The latter implies

dn�1 � dn5
d

n� 1
2

�
d

nþ 1
2

:
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Adding up the terms results in

dn5
d

nþ 1
2

for n5N 0: ð3Þ

Let D be the greatest positive number such that

dn ¼
D

nþ 1
2

þ en; ð4Þ

where en50 and n5N 0: By (3) we have D5d: Substituting (4) into (2) yields

en�1 � en � en�1en5
D2 � Dþ d

n2 � 1
4

þ
Den
n� 1

2

þ
Den�1

nþ 1
2

: ð5Þ

In particular, we have

en�1 � en5
D2 � Dþ d

n2 � 1
4

¼ ðD2 � Dþ dÞ
1

n� 1
2

�
1

nþ 1
2

 !
: ð6Þ

Adding up the terms gives

en5
D2 � Dþ d

nþ 1
2

:

By the definition of D we must have

05D2 � Dþ d ¼ D�
1

2

	 
2

þd �
1

4
:

Hence d41
4
: ]

Remark 1. The estimate c41 is sharp because the numbers

an ¼
1

4
þ

1

4ð4n2 � 1Þ
¼

n
2nþ 1

1�
n� 1

2n� 1

	 


form a chain sequence.

Remark 2. From the proof we get the estimate

1

2
�

ffiffiffiffiffiffiffiffiffiffiffi
1

4
� d

r
4D4

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffi
1

4
� d

r
:

When d ¼
1

4
we obtain D ¼

1

2
:
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Proposition 1. The sequence

an ¼
1

4
þ

1

4ð4n2 � 1Þ
; n51

is a maximal chain sequence, i.e. for any chain sequence fbng
1
n¼1 if bn5an

for every n51 then bn ¼ an for every n51:

Proof. Let bn be a chain sequence such that bn5an for n51: Hence,
there are numbers 04gn41 for n50 such that

gnð1� gn�1Þ5
1

4
þ

1

4ð4n2 � 1Þ

for every n51: From the proof of Theorem 1 we know that gn is of the form
gn ¼ 1�dn

2
; where dn50: By Remark 2 and by (4) we get

dn ¼
1

2nþ 1
þ en

for some nonnegative sequence en: We have

g0 ¼
1� d0

2
¼ �

e0
2
:

Thus e0 ¼ 0: Moreover, by (6) we get

en�1 � en50:

Hence en ¼ 0 for any n50: Consequently, dn ¼
1

2nþ 1
and

bn ¼ gnð1� gn�1Þ ¼
1

4
þ

1

4ð4n2 � 1Þ
¼ an: ]

We will study now by how much a chain sequence may exceed 1
4
þ 1

16n2 for
n5N : This answers a question posed in [4, Remark, p. 626].

Theorem 2. Let an be a chain sequence satisfying

an5
1

4
þ

1

16n2
þ

c
n2 loga n

for n5N with c > 0: Then a52:

Proof. By assumptions there exists a sequence gn; such that 04gn41 and
an ¼ gnð1� gn�1Þ: By replacing the number N with an appropriately bigger
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number N 0 we may assume that

gnð1� gn�1Þ5
1

4
þ

1

4ð4n2 � 1Þ
þ

en
4ð4n2 � 1Þ

ð7Þ

for n5N 0; where

en ¼
c

loga n
: ð8Þ

By the proof of Theorem 1 we can write gn ¼ 1�dn
2
; where dn50; for n5N 0:

Moreover, using Remark 2 and (4) gives that

dn5
1

2nþ 1

for n5N 0: Therefore, we may write

dn ¼
1þ un
2nþ 1

for some sequence un with nonnegative terms for n5N 0:
Now we substitute this into (7) to obtain after obvious simplifications the

following:

un�1 � un5
en
2n

þ
un�1un
2n

; n5N 0: ð9Þ

By summing up we get

un5
X
k¼nþ1

ek
2k

ð10Þ

for n5N 0: On the other hand (9) implies

un�1 � un5
un�1un
2n

; n5N 0:

Thus,

1

un
�

1

un�1
5

1

2n
; n5N 0:

Hence,

1

un
5

1

2
log nþ C
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for n5N 0 and some real constant C: This and (10) imply

sup
n

ðlog nÞ
X1
k¼n

ek
k
5þ1: ð11Þ

Now (8) yields a52: ]

Remark 3. The estimate a52 is sharp. Indeed, it is not hard to show
that taking g0 ¼ 0; g1 ¼ 1

2
and

gn ¼
n

2nþ 1
�

1

2ð2nþ 1Þ log n
; n52

gives rise to the chain sequence an ¼ gnð1� gn�1Þ which satisfies the
assumptions of Theorem 2 with a ¼ 2:

Remark 4. Theorem 2 gives sharper estimates than the one given in
[4, Theorem 2.2], which states that if

an ¼
1

4
þ

1þ en
16n2

ð12Þ

with en50 for large n and
P

ðen=nÞ ¼ þ1; then an cannot be a chain
sequence. Indeed, let en ¼ log�aðnþ 2Þ; where 15a52: Then

P
ðen=nÞ5þ

1; but by Theorem 2 the sequence defined by (12) is not a chain sequence.

Combining Theorem A and Theorem 1 implies the following.

Theorem 3. Let J be a Jacobi matrix with entries

J ðn;mÞ ¼

ln for m ¼ nþ 1;

lnþ1 for m ¼ n� 1;

0 otherwise:

8><
>: ð13Þ

Assume

ln5
1

2
þ

C
16n2

for n sufficiently large. Assume J is a contraction on the Hilbert space ‘2ðNÞ:
Then C41:

Remark. One may try to prove Theorem 13 directly. Indeed, assuming
that C > 1 one has to show that

jjJ jj ¼ supfðJx; xÞ j ðx; xÞ41g > 1:
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We may assume that ln ! 1=2: Then J is a compact perturbation of the
constant Jacobi matrix J0; where

J ðn;mÞ ¼

1
2

for m ¼ nþ 1;
1
2

for m ¼ n� 1;

0 otherwise:

8><
>:

It is well known that sðJ0Þ ¼ ½�1; 1�: Thus by the Weyl theorem the
continuous spectrum of J coincides with ½�1; 1�: Hence, the number jjJ jj > 1
is an eigenvalue of J : Therefore, if one wants to show that

supfðJx; xÞ j ðx; xÞ41g > 1;

he must find an eigenvector of J ; or a vector pretty close to it. As we know it
is not an easy task, even if we can guess the asymptotic behaviour of the
coordinates of this eigenvector.

By Proposition 1 we obtain the following.

Corollary 1. Let J be a Jacobi matrix with entries corresponding to the

sequence

ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

1

4ð4n2 � 1Þ

s

according to (13). Then J is the maximal Jacobi matrix which is a contraction

on ‘2ðNÞ; i.e. any matrix J 0 corresponding to l0n5ln for all n51 is a

contraction only if l0n ¼ ln for all n51:

3. APPLICATIONS TO UNBOUNDED JACOBI MATRICES

Theorem 1 can be applied also in the context of unbounded Jacobi
matrices. Assume that J is defined by (13), where the coefficients ln may be
positive and unbounded. We may also assume that the corresponding
matrix J is essentially self-adjoint on the space of finitely supported
sequences in ‘2ðNÞ: By Hamburger’s theorem this property is equivalent to
the fact that the eigenvalue equation

lnþ1xnþ1 þ lnxn�1 ¼ 0; n51;

admits solutions x ¼ fxng
1
n¼0 which are not square summable (see [1,

Problem 10, p. 84] or [7, Proposition 5.13]). One can compute easily that
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such solutions exist if and only if

X1
n¼1

l1l3 . . . l2n�1

l2l4 . . . l2n

	 
2

¼ 1 or
X1
n¼1

l2l4 . . . l2n
l3l5 . . . l2nþ1

	 
2

¼ 1: ð14Þ

We want to decide if the interval ð�a; aÞ is disjoint from the spectrum of J
and we would like to determine the largest a possible.

Consider the sequence of polynomials pnðxÞ defined recursively by
p�1 ¼ 0; p0 ¼ 1; and

xpnðxÞ ¼ lnþ1pnþ1 þ lnpn�1; n50: ð15Þ

By Favard’s theorem there is a probability measure dmðxÞ such thatZ 1

�1
pnðxÞpmðxÞ dmðxÞ ¼ dmn :

This measure is unique, since we have assumed that J is essentially self-
adjoint. Moreover, the operator corresponding to J is unitarily equivalent to
multiplication by the variable x on the Hilbert space L2ðR; dmÞ: Therefore,
the spectrum of J coincides with suppðmÞ: Thus, our aim will be to find

a ¼ inffx50 j x 2 supp mg:

By (15) the polynomials p2n are even functions while p2nþ1 are odd ones.
Hence, the orthogonality measure m is symmetric about the origin.
Moreover, observe that qnðyÞ ¼ p2nð

ffiffiffi
y

p
Þ is a polynomial of nth degree

satisfying q0 ¼ 0 and

yqn ¼ l2nþ1l2nþ2qnþ1 þ ½l22n þ l22nþ1�qn þ l2n�1l2nqn�1 ð16Þ

for n50 with the convention l0 ¼ 0: The polynomials qn are orthogonal on
the positive half-axis with respect to the measure dnðyÞ ¼ 2dmð

ffiffiffi
y

p
Þ for y > 0

and nðf0gÞ ¼ mðf0gÞ: Now we see that

a ¼ inff
ffiffiffi
y

p
j y 2 supp ng:

Thus, the number a2 is located to the left of supp n: By Theorem B this is
equivalent to the fact that the sequence

an ¼
l22n�1l

2
2n

ðl22n�2 þ l22n�1 � a2Þðl22n þ l22nþ1 � a2Þ
ð17Þ

is a chain sequence. Moreover, an is a maximal chain sequence if and only if
the integral

R1
0

1
y�a2 dnðyÞ is infinite (see [8, Theorem 1, or 9, Theorem 5]).
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This in turn is equivalent to the fact that
R1
�1

1
x2�a2 dmðxÞ ¼ 1: Observe that

ln ! 1 and ln=ln�1 ! 1 when n tends to infinity. Then the sequence in (17)
tends to 1/4. That is why the results of Section 1 can be useful here.

Let us turn now to examples.

Example 1. Assume that the numbers ln satisfy l2n ¼ l2nþ1: Then J is
essentially self-adjoint. By (17) we have for a ¼ 0;

an ¼
1
2

for n ¼ 1;
1
4

for n52:

(

It can be checked easily that the sequence an is a maximal chain sequence.
Hence, we cannot get a chain sequence in (17) by taking positive a: Therefore,
0 belongs to the spectrum of J : Moreover, by maximality of an we getZ 1

�1

1

x2
dmðxÞ ¼ þ1:

If the first series in (14) is divergent, the number 0 is not an eigenvalue. Hence
0 is an accumulation point of the spectrum of J :

Example 2. Let J be associated with the sequence ln ¼ n: According to
(17) we have to study the sequence

an ¼
ð2n� 1Þ2ð2nÞ2

½ð2n� 2Þ2 þ ð2n� 1Þ2 � a2�½ð2nÞ2 þ ð2nþ 1Þ2 � a2�
:

It is not hard to compute that

an ¼
1

4
þ

a2 þ 1

16n2
þ Oðn�3Þ:

Thus by Theorem 1, the numbers an form a chain sequence only for a ¼ 0:
Furthermore, the spectrum of the Jacobi matrix J is not isolated from the
point 0: This particular operator is pretty well known. Its spectrum coincides
with the whole real line and the corresponding measure m is absolutely
continuous. Moreover, we have

an4bn ¼
n2

4n2 � 1

and the sequences an and bn do not coincide. Thus, an is not a maximal chain
sequence. Hence, if m denotes the orthogonality measure thenZ 1

�1

1

x2
dmðxÞ5þ1:
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It is worthwhile observing that the polynomials associated with the matrix J
are the limit cases, when k ! 1 of the polynomials studied by Stieltjes and
Carlitz (see [3, (9.3), (9.4), p. 193]).

The next example has been studied by Moszyski [6].

Example 3. Let J be associated with the sequence l2n�1 ¼ l2n ¼ n:
According to (17) we have to study the sequence

an ¼
n4

½ðn� 1Þ2 þ n2 � a2�½n2 þ ðnþ 1Þ2 � a2�
:

One can compute easily that

an ¼
1

4
þ

a2

4n2
þ Oðn�3Þ:

Therefore, an can be a chain sequence only for a41
2
: Let a ¼ 1

2
: Then

an ¼
16n4

ð8n2 þ 3Þ2 � 64n2
4

1

4
þ

1

4ð4n2 � 1Þ
:

Since the right-hand side is a chain sequence (see Proposition 1) an also is a
chain sequence. Summarizing we obtain that the interval ð�1=2; 1=2Þ is
disjoint from the spectrum of J and this is the largest interval with that
property, which means that �1

2
2 sðJ Þ: This fact has been proved in [6] by

estimating below the quadratic form of the operator J : Moreover an is not a
maximal chain sequence which implies that the orthogonality measure m
corresponding to J satisfiesZ 1

�1

1

x2 � 1
4

dmðxÞ5þ1:

This implies in particular that the numbers �1
2
are not eigenvalues of J :

Example 4. Let J be associated with the sequence l2n�1 ¼ l2n ¼
ffiffiffi
n

p
: In

view of (17) we obtain the sequence

an ¼
n2

ð2n� 1� aÞð2nþ 1� aÞ
5

n2

4n2 � 1
¼

1

4
þ

1

4ð4n2 � 1Þ
:

Hence, by Proposition 1 the numbers an form a chain sequence only for
a ¼ 0: Moreover, by [8, Theorem 1] the corresponding orthogonality
measure has no finite moment of order �2: Moreover, it can be checked
directly that 0 is not an eigenvalue, hence it is an accumulation point of the
spectrum.
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